Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor.

نویسندگان

  • W Xu
  • K Angelis
  • D Danielpour
  • M M Haddad
  • O Bischof
  • J Campisi
  • E Stavnezer
  • E E Medrano
چکیده

The c-ski protooncogene encodes a transcription factor that binds DNA only in association with other proteins. To identify co-binding proteins, we performed a yeast two-hybrid screen. The results of the screen and subsequent co-immunoprecipitation studies identified Smad2 and Smad3, two transcriptional activators that mediate the type beta transforming growth factor (TGF-beta) response, as Ski-interacting proteins. In Ski-transformed cells, all of the Ski protein was found in Smad3-containing complexes that accumulated in the nucleus in the absence of added TGF-beta. DNA binding assays showed that Ski, Smad2, Smad3, and Smad4 form a complex with the Smad/Ski binding element GTCTAGAC (SBE). Ski repressed TGF-beta-induced expression of 3TP-Lux, the natural plasminogen activator inhibitor 1 promoter and of reporter genes driven by the SBE and the related CAGA element. In addition, Ski repressed a TGF-beta-inducible promoter containing AP-1 (TRE) elements activated by a combination of Smads, Fos, and/or Jun proteins. Ski also repressed synergistic activation of promoters by combinations of Smad proteins but failed to repress in the absence of Smad4. Thus, Ski acts in opposition to TGF-beta-induced transcriptional activation by functioning as a Smad-dependent co-repressor. The biological relevance of this transcriptional repression was established by showing that overexpression of Ski abolished TGF-beta-mediated growth inhibition in a prostate-derived epithelial cell line.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

c-Jun associates with the oncoprotein Ski and suppresses Smad2 transcriptional activity.

The Smad proteins are key intracellular effectors of transforming growth factor-beta (TGF-beta) cytokines. The ability of Smads to modulate transcription results from a functional cooperativity with the coactivators p300/cAMP-response element-binding protein-binding protein (CBP), or the corepressors TGIF and Ski. The c-Jun N-terminal kinase (JNK) pathway, another downstream target activated by...

متن کامل

Repression of Smad2 and Smad3 transactivating activity by association with a novel splice variant of CCAAT-binding factor C subunit.

Activation by transforming growth factor-beta (TGF-beta)/activin receptors leads to phosphorylation of Smad2 (Sma- and Mad-related protein 2) and Smad3, which function as transcription factors to regulate gene expression. Using the MH2 domain (Mad homologue domain of Smad proteins 2) of Smad3 in a yeast two-hybrid screening, we isolated a novel splice variant of CAATT-binding factor subunit C (...

متن کامل

Differential role of Sloan-Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells.

Transforming growth factor-beta (TGF-β) signaling pathways contain both tumor suppressor and tumor promoting activities. We have demonstrated that Nodal, another member of the TGF-β superfamily, and its receptors are expressed in prostate cancer cells. Nodal and TGF-β exerted similar biological effects on prostate cells; both inhibited proliferation in WPE, RWPE1 and DU145 cells, whereas neithe...

متن کامل

Linking Smads and transcriptional activation.

TGF-beta1 (transforming growth factor-beta1) is the prototypical member of a large family of pleiotropic cytokines that regulate diverse biological processes during development and adult tissue homoeostasis. TGF-beta signals via membrane bound serine/threonine kinase receptors which transmit their signals via the intracellular signalling molecules Smad2, Smad3 and Smad4. These Smads contain con...

متن کامل

Smad2 and Smad3 cooperate and antagonize simultaneously in vertebrate neurogenesis.

The transforming growth factor beta (TGF-β) pathway plays key roles in development and cancer. TGF-β signaling converges on the Smad2 and Smad3 effectors, which can either cooperate or antagonize to regulate their transcriptional targets. Here we performed in vivo and in silico experiments to study how such cooperativity and antagonism might function during neurogenesis. In vivo electroporation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 11  شماره 

صفحات  -

تاریخ انتشار 2000